Guidelines on Improved Water Allocation for Agriculture

Introduction

03-10-2022
1 History

• Commissioned by the High-Level Joint Water-Agriculture Technical Committee of the League of Arab States
• Preparation undertaken by FAO and ESCWA
• Interviews, analysis, literature review
• Approved by Ministerial Conference van Arab League on 27 January 2022
• Putting these in practice through pilots
The urgency

- Increased water consumption in 2009-2020
- Biomass production not keeping up with population increase in 2009-2020
- Biomass water productivity is static/erratic in LAS in 2009-2020
- Climate change does not explain it, effects varied, though generally more demanding
- Water use has gone up – even if corrected with climate effect – in times of scarcity
• In 15 out 19 LAS countries water consumption in irrigated areas increased from 2009-2020

• In spite of concerns over water scarcity, 12 out of the 19 countries had more than 10% increase in water consumption!

• This does not account for new irrigation system development
Biomass production in irrigated areas increased in 14 out of 19 countries. Only in 3 countries did it keep up with the population growth.
Special concern

- Unsustainable groundwater use
- in a huge concern:
- Use exceeds recharge
- Exhausting fossil stocks
- Pumping saline water from 600 m
- Not many examples of successful regulation
Purpose and content

• Guidelines on improved water allocation for agriculture

• Systematic guidance to decision makers and water resource planners in the Arab countries on improving water allocation for agriculture.

1. Scan
 • of the necessary governance arrangements

2. Systematic assessment
 • of improvements of water allocation

3. Guidance
 • on the process for change

4. Agenda tool
 • for pilots
“Water resources allocation determines who is able to use water resources, how, when and where....
Definition (OECD 2015)

• Evolved in a piecemeal fashion over time
• Exhibit a high degree of path dependency,
 • Manifests in laws and policies,
 • Design and operational rules of long-lived water infrastructures.

This means that water use is often “locked-in” to uses that are no longer as valuable today

In essence, (re)allocation is a means to manage the risk of shortage and to adjudicate between competing uses.”
Often a blind spot and missed opportunity

‘Who gets what, how, when and where’ is at the heart of water governance and economies and societies at large

At the same time often a **blind spot** (or ‘lock-in’):
- In many cases, formal water allocation is not a topic of discussion
- Practices accepted as they are, with no plan to improve
- No center of excellence or community of practice

Missed opportunity:
- Many opportunities to critically improve, very much so for agricultural sector
 - Agriculture main water user: 80-92%
 - Much scope to improve water allocation within agriculture (timing, quantities)
2 Conducive governance arrangements
Scan of the necessary governance arrangements

- Water allocation to be part of water governance, in the management of existing systems and in the development of new systems.
- Different elements of water governance facilitate the attention for improved water allocation and support its implementation.
Accurate metrics

Accurate metrics on main parameters of water availability and water use

Common understanding

Agreement, at least tacit
Clear policy and regulation

Operationalize generic water policies

- space for optimizing water allocation

Mention of:

- Allocation between sectors and within sectors
- Prioritization
- Reallocation

Example:

- Water reallocation/Water substitution and reuse policies of Jordan
Institutional leadership

- Support at policy level
- Access to implementation
- Institutionalized
- Systematic communication between state and water users
- Find ways to deal with challenge of no effective state control over parts of the agricultural water management system - as in groundwater
Transparent public private roles

- Engage with local stakeholders
- Short and long terms benefit and cost scenarios
- Recognize pre-existing land use
- Recognize in situ and downstream water use
- Undertake risk analysis
- Have clear and univocal arrangements
- Include performance standards
- Exclude liability claims
- Examples: Sudan, Egypt
- Future: focus on efficiency/saving rather than capture/development
Clear water tenure

• ‘...The relationship, whether legally or customarily defined, between people, as individuals or groups, with respect to water resources...’ (FAO 2020)

• Clear entitlements
• Define the bundle of rights >
• Codification

<table>
<thead>
<tr>
<th>Use rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion rights</td>
</tr>
<tr>
<td>Transferability rights</td>
</tr>
<tr>
<td>Governance and management rights</td>
</tr>
<tr>
<td>Procedural rights</td>
</tr>
<tr>
<td>Related responsibilities</td>
</tr>
</tbody>
</table>
Routine integration in operation

• For water operators:
 • Optimize water allocations on a regular basis
 • Especially in pre-arranged supply-based systems
Systematic stakeholder and user coordination

- Bundling users interest is useful:
 - Water users associations as part of overall water governance (beyond project)
 - Basin organizations with clout (beyond consultative)
3 Water allocation optimizations in agriculture

- System of water allocation should as much as possible align with national strategic objectives
- Reallocation contributes to different (complementary) objectives:
 - addressing water scarcity,
 - (somehow) keep up with food security needs,
 - giving space to non-agricultural water uses
 - dealing with the likely occurrence of droughts and floods,
 - freeing up high quality water
 - creating more flexibility and demand orientation
 - contributing to sustainable water use.
Optimized water allocation objectives

- Improved multi-functionality
- Improved water productivity
- Improved demand orientation
- Improved management of drought and abundance
- Balanced management of surfacing groundwater
- Better equity and protection of vulnerables
- Optimized irrigation supplies and schedules
- Substitution of water resources

Possible Practices:
- Drainage management
- Drainage water reuse
- Reduced water consumption
- Reallocation
- Water allocation for: Domestic use, Industrial use, Wetlands, Environmental flows
- Physical water productivity
- Social water productivity
- Economic water productivity
- Requisition
- ATM systems
- Open shares
- Transferable water rights
- Replace high quality with low quality water
- Mixing
- Treatment
- Downstream supplies
- Curtail overuse
- Safeguard groundwater levels
- Creation of water buffers
- Reservoir operations
- Management of excess water and floods
- Conjunctive management of groundwater and surface water
- Water quality management
System planning level

- ...
Improved water productivity

- More than bio-physical water productivity (‘crop per drop’)
- Also:
 - Economic water productivity
 - Social water productivity
- Undertake Social Water Productivity Check
Improved management of droughts and abundance

- More surface water storage
 - head of the system,
 - decentralized within the system
 - out of the system (i.e. flood escapes)
- Make better use of freshwater aquifers (routing excess flows)
- Improve water management, the more so for C3 crops.
Improved multi-functionality

- Agricultural systems are multifunctional:
 - water for domestic use,
 - water for industries,
 - wetlands or
 - environmental flows
 - others
- Optimize and recognize these multiple functions and make part of the water allocation system
- Also in groundwater systems
Improved demand management

- In general: overcome rigidity
- Methods such as:
 - Water requisition systems
 - Special unallocated water shares
 - ATM systems
Substitution of water resources

For instance:

- Substitute fresh water with treated water
- Replace depleted groundwater with treated water or surface water
- Free up water for non-agricultural uses

Quality of substitute water needs to conform to quality norms
System operations level
Optimized irrigation supplies and schedules

- Allocations should harmonize with the actual or preferred cropping pattern
- Decisions on where to use water that is saved should be part of efficiency improvement plan
Reuse and water quality management

- Optimize drainage and reuse
- Safeguard quality of water
- Mixing strategies
Conjunctive management of surface and groundwater

• Finding balance of ‘optimum seepage and reuse’
 • No wastage, no shortage
 • Demand orientation
 • Buffer
• Water quality factor
Getting the process to move

Four factors:

- Leadership: Mandate, agendas
- Ownership: Diverse users, self-assessment
- Engagement: Broad stakeholders, coordination
- Shared understanding: Date, maps, tools

IMPROVED ALLOCATION
Create an agenda for improved water allocation

Change leaders to:

1. bring different stakeholders together
2. invest in developing the shared evidence-based understanding
3. give space to the diverse group of users
4. connect to higher level leadership and follow up processes and
5. give all the confidence that the process is under control

Political endorsement

Publicity

Institutionalization
Having a shared data set

Catalytic
- Overview
- Discussion
- Agreement

Instruments
- SCADA
- Water Accounting Plus
- Remote sensing
Stakeholder engagement

- Processing of get to know each other and appreciate different positions
- Reflect on different interests and positions
- Create common perception preferably by maps and data
- Create structured process with delegated subgroups
- Make use of local activists
Ownership of diverse users

Diverse users:
- Agriculture and others
- Different parts of the system

Self assessment as tool
Thank You

fvansteenbergen@metameta.nl
0031644995010
farajalla@gmail.com
009613536006